
i, ¸

NASA Contractor Report 198244

ICASE Report No. 95-83

ICA

MULTITHREADED MODEL FOR DYNAMIC

LOAD BM.ANCING PARALLEL ADAFI'IVE

PDE COMPUTATIONS

Nikos Chrisochoides

NASA Contract No. NAS1-19480

November 1995

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National A eronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

Multithreaded

parallel

model for dynamic load balancing

adaptive PDE computations

Nikos Chrisochoides*

Advanced Computing Research Institute

Cornell Theory Center, Cornell University

Ithaca, NY 14853-3801

Abstract

We present a multithreaded model for the dynamic load-balancing of numerical, adap-

tive computations required for the solution of Partial Differential Equations (PDEs) on

multiprocessors. Multithreading is used as a means of exploring concurrency at the proces-

sor level in order to tolerate synchronization costs inherent to traditional (non-threaded)

parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers

indicates that multithreading can be used as a mechanism to mask overheads required for

the dynamic balancing of processor workloads with computations required for the actual

numerical solution of the PDEs. Also, multithreading can simplify the implementation of

dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel

adaptive PDE computations. Unfortunately, multithreading does not always simplify pro-

gram complexity, often makes code re-usability difficult, and increases software complexity.

"This work was supported by an Alex Nason Prize Award, by NSF ASC 93 18152/ PHY 93 18152 (ARPA

supplemented), by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480.

while the author was in residence at the Institute for Computer Applications in Science and Engineering, (ICASE),

NASA Langley Research Center, Hampton, VA 23681 and in part by the Cornell Theory Center.

1 Introduction

One of the difficulties in parallel programming is attaining good performance when solving prob-

lems with irregular and dynamic (adaptive) computations. Many of the early successes of parallel

processing were obtained on relatively regular problems (e.g., structured, static grids). The need

to solve real-life problems increased the necessity to address issues related to the parallelization

of irregular and adaptive computations such as adaptive finite-element computations for fluid

flows and structures.

Traditional load-balancing methods for non-threaded computations under-utilize multiproces-

sot resources such as CPU, memory, and network, since the load-balancing is carried out in

sequential phases that require global synchronizations [1], [2]. As an alternative to the tra-

ditional load-balancing methods we propose a multithreaded model. According to this model

processors execute many computational actions or threads of control; each thread is typically

dependent on results of local or remote threads. Instead of scheduling these threads in a static

and predefined way, we allow them to be dynamically scheduled based on availability of the data

they depend on.

Multithreading here is used as a mechanism for concurrently executing actions or tasks required

for load-balancing--such as information dissemination, decision making, and data migration--

and tasks required for the computation of the actual application. Multithreading improves CPU

and network utilization by masking the inherent synchronization delays involved in traditional

non-threaded load-balancing methods. W'e prove that under certain values of the parameters

(i.e., number of threads, and context switch time) of the model, multithreaded load-balancing

systems are expected to perform better than existing non-threaded load-balancing software.

The rest of this paper is organized as follows: Section 2 provides an overview of existing load-

balancing methods and a brief introduction to lightweight threads. In Section 3 we describe

a set of geometric abstractions that we use in the rest of the paper. Section 4 outlines the

basic principles of our load-balancing algorithm based on the multithreaded model. Section 5

presents a comparison of the load-balancing algorithm with existing direct and incremental load-

balancing methods. Finally, in Section 6 we outline a number of advantages and disadvantages of

the multithreaded approach for parallel numerical computing and we conclude with future work

and directions.

2 Background

Parallelism, for data-parallel PDE solvers, is achieved by decomposing the underlying geometric

(i.e., grids) or algebraic (i.e., linear systems of equations) data structures. The data decomposi-

tion of grids or sparse coefficient matrices is equivalent to a graph partitioning problem which is

an NP-Complete problem. During the last 8 to 10 years many interesting heuristics have been

proposed to compute sub-optimal data distributions for static PDE problems. In this section we

first, present a brief overview of the most commonly used heuristics and introduce basic concepts

of threads which we will be using throughout the paper.

2.1 Load-balancing: an overview

The time it takes to execute a program on a multiprocessor is equal to the time it takes for the

slowest (overloaded) processor to complete its computation (calculations and communication).

Therefore, the objective of load-balancing algorithms and software is to minimize the execution

time of the slowest processor. Existing load-balancing algorithms and software systems assume

no overlapping of communication with calculations and balance the processors '1 workloads by

minimizing the following objective function [48]:

OF = max{ W(m(D,)) + y_ C(m(D_),m(Di)) } (1)
I<i<P
_ _ DjE_Di

where, for data-parallel PDE solvers, m: {Di}P=I _ {Pi}P=, is a function that maps the grid

points (grids) of submesh D, to processor Pi = m(Di); W(m(Di)) is the computational load of

the processor rn(D_), which is proportional to the number of grids in D;; C(m(Di), m(Dj)) is

the communication cost required between the processors m(Di) and m(Dj); and, finally, _9, is

the set of submeshes that are adjacent to Di. These heuristics are classified into two classes:

direct (or clustering) and iterative (or incremental). A list of very interesting results for direct

and incremental methods, which is by no means complete, appears in [1], [13], [22], [23], [24],

[25], [40], [41], [42], [43], [44], [45], [46], [48],and [49].

The data-clustering algorithms are based on grouping mesh points into clusters such that the

points within a cluster have a high degree of "natural association" among themselves, while the

clusters are "relatively distinct" from each other. In our case, "natural association" is expressed

1We assume homogeneous processors.

in terms of the locality properties of the finite element and finite difference stencils that are used

to approximate a continuous PDE operator. The "relative distinction" is expressed in terms of

the address space that is associated with the unknowns of the mesh or grid points of the same

cluster. Most of these algorithms are computationally expensive and very successful in solving

the load-balancing problem for static PDE computations [13], [47], [48]. They require a complete

global knowledge of the graph (mesh) and, therefore, these methods are not suitable for adaptive

methods in which the topology and/or geometry of the mesh change any time h-refinement is

performed throughout the PDE solution process. In addition, some of these methods are sensitive

to small perturbations (h-refinement) and often lead to heavy data migration [43], [44].

On the other hand, existing incremental (non-threaded) methods are not as expensive as

clustering methods. Flaherty's group at RPI have shown in [1], [49] that these methods are very

successful in load-balancing the computation of adaptive PDE methods on distributed-memory

MIMD machines. Incremental methods--as is true for direct methods--decompose the parallel

adaptive PDE computations into three phases: (i) computation, (ii) balancing and (iii) data-

migration. The computation phase corresponds to the actual computation and inter-processor

communication required by the PDE solver, while the balancing and data migration phases

correspond to the calculation and inter-processor communication required to solve and enforce

the solution of the minimization problem defined by equation (1). A global synchronization

barrier guarantees that all processors reach the balancing and data-migration phases at the same

time [1].

2.2 Threads

Threads were used for many years in disciplines such as real-time systems and distributed op-

erating systems very successfully. A thread is an independent set of instructions that executes

within the context of a UNIX process (see [8], [9], [10], [11], and [12]). Threads in multithreaded

programs run logically concurrently. For multicomputers, the decomposition of a coarse-grained

computation into finer grained, logically concurrent executable threads is needed for three rea-

sons: (1) to overlap in time logically separate tasks that use different resources (i.e., network,

CPU, disks), (2) to simplify parallel programming, and (3) to load balance computations. Typical

examples for the logically concurrent execution of threads are (i) the overlapping of calculation

with communication [14], and (ii) the overlapping of load balancing and actual computation

phases [15].

During execution each thread can be in one of the following states: new, ready, running,

blocked, dead. The state of a thread is defined by its current activity. When a thread is created

it is given a function to run and it is set to a new state. A thread in the new state consists of

various data structures that describe its context. Once the data structures are allocated and the

thread is registered with the system, the thread moves to the ready queue and its state is set

to ready. If a thread is selected to execute, then its state changes to running. While a thread

is in the running state it may decide 2 to wait for a condition or for outstanding receives to be

signaled, in which case its state changes to blocked. Finally, after a thread completes its execution

or decides to terminate its state, it changes to dead. The use of these states will become clear in

Section 4.

Figure 1: Thread state diagram.

For the type of parallel computations we address in this paper we need non-preemptive schedul-

ing of the threads (i.e., threads run to completion or voluntarily yield the CPU). An advantage

of such a scheduling strategy is the reduction of overhead by keeping context-switches 3 to a min-

imum. Threads are classified into heavy- or light-weight threads based on the amount of context

(weight) that needs to be saved/restored when a thread is removed or reinstated from/to the

2In the case of non-preemptive systems.

3Switching from one thread to another requires a certain amount of time for administration (saving and loading

registers and memory maps, and updating various tables and lists).

CPU. In this paper we use light-weight (or user-defined) threads.

The computation of multithreaded data-parallel programs consists of two phases, namely,

computation and thread-scheduling phases. During the computation phase, the processor con-

currently performs the operations needed to execute the actual computation: (1) it initializes

send/recv operations, (2) it polls and notifies threads with outstanding recvs, (3) it performs

actual calculations, and (4) it provides remote service requests such as check/change status of

remote threads. Finally, during the thread-scheduling phase the processor does the bookkeeping

required for the administration and the execution of threads. This is an additional overhead that

does not appear in the non-threaded, data-parallel paradigm.

3 Basic abstractions

We break the original load-balancing problem into many simpler problems by defining a hierar-

chy of geometric abstractions: domains, blocks, subdomains and regions. Regions are mapped

to scalar objects called threads. Threads execute in a loosely, synchronous mode. Based on

computation and synchronization requirements, threads are grouped into distributed objects:

strings, ropes and nets. Threads that correspond to regions of the same subdomain belong in

the same string (see Figure 2). Threads that belong in the same string execute the same code

on different data (SPMD model). Strings that correspond to the subdomains of the same block

belong in the same rope. Threads on different ropes might compute the solution for different

PDEs, use different grid types, apply different solution methods, and they may therefore have

different computational requirements and synchronization points (MPMD model). Finally, ropes

that correspond to blocks of the same domain and handle the computation associated with the

same application belong in the same net (see Figure 2).

Processor workload is balanced by: (i) migrating threads from overloaded processors to under-

loaded ones that handle strings from the same rope, and (ii) by migrating strings from overloaded

processors to underloaded ones that handle ropes from the same net. The thread and string mi-

gration is non-preemptive and, therefore, instead of thread migration we perform data-migration.

The data is migrated so that subsequent communication for the actual parallel computation of

the PDE solver is minimized.

For each subdomain, for example S_,s, of Figure 3, we identi_ two types of regions: interface

regions and interior regions. A region is considered to be interface if there is a grid point in the

5

Bi :

Blocks

__-_ SjBi

Interface Regions_

Subdomains + Grid + Lu = f

+ PDEs

IT

V

Computational Space

net

ropes

ri :
sij

sik
\

\

Interior Regions threads

Figure 2: Geometric and parallel abstractions.

region that has at least one of its adjacent neighbor points residing in a different context (tradi-

tionally non-local memory). Non-interface regions are considered to be interior. Computations

on interior regions of different subdomains can be performed independently. For each interface

or interior region we associate (create) one thread, t (see Figure 3). The size, It], of a thread is

analogous to the number of grid points of the corresponding region--many times in this paper

we denote by t the mesh that corresponds to the thread t. All threads for h-refinement PDE

methods are of the same size. The size of a thread can change during the computation in order to

achieve better balancing of processors' work-loads (i.e., each thread can be split into two or more

threads, depending on the required load-balancing resolution; such a resolution can be achieved

within a small number--order of log 2 Itl or log4 Itl-- of iterations compared to the number of

iterations required by incremental load-balancing algorithms [1]).

Interior threads execute exclusively on data residing in the memory of the processor on which

the threads execute, while interface threads require the access of non-local data. Threads cor-

responding to regions of the same subdomain belong in the same process (context) and com-

municate using the shared-memory (user-address space for the process) model, while interface

threads that correspond to regions from different subdomains communicate through message

6

Interlace unkr,o'_in_

_ter_or unkno_s j ___

Intedace ___ __'_ Subdomain3

Inteno_

SubdomaJn 0 Subdomain 3

Subdomaln 2

Figure 3: Left) Block, B_, in middle row second from tile left of Figure 2; Bi is partitioned into

four subdomains, {Si,B,}i_l. Right) Global thread graph and its partition into four subgraphs

that correspond to {Si,s,}i41. Threads with data dependencies (edges) that cross the internal

boundary of the subdomains are interface threads, otherwise they are interior threads.

passing (for more details, see [17]). Two types of local communication are identified: inter-block

(or inter-group) and intra-block (or intra-group). Network traffic can be reduced by using a

scheduling communication mechanism between threads with different types of data flow needs.

Such schedulings can be achieved by grouping threads of the same block into ropes [:37], [27], [28].

Ropes can use group synchronization and collective communication mechanisms and more than

one rope can share resources such as CPU, network, and memory. For more details on ropes, see

[271 and [37].

4 Multithreaded approach for load-balancing

In this section we describe a multithreaded model for developing load-balancing (sharing) algo-

rithms. The traditional non-threaded approach for load-balancing of PDE computations leads

to (1) under-utilization of multiprocessor resources such as the CPU and network and (2) in

some cases intensification of problems like network contention --due to the fact that all pro-

cessors perform data migration simultaneously. In this section we propose a new approach for

load-balancing that explores concurrency within the processor in order to maximize utilization of

multiprocessor resourceswithout sacrificingprogramcomplexity. Our approach,in contrast to

the direct and incremental, non-threaded,load-balancingmethods,attempts to ensurethat no

processoris waiting idle whilemore than onethread remainsto beexecutedon other processors.

Each processor,when the needarises,requestswork (threads)from a subset (neighborhood)of

processorsthat areoverloadedor slow.

Independentof the approach(traditional or multithreaded) weuseto load-balancePDE com-

putations, we should focus on three fundamental issues,namely: (I) memory latency, (2) syn-

chronization cost, and (3) convergence rate. In this paper we address the memory latency and

synchronization cost; it is difficult to uncouple these issues and therefore we have to consider the

convergence rate of PDE solvers whenever we deal with message passing and scheduling latencies.

In the rest of the paper we address issues related to convergence rate of PDE solvers only when

it is absolutely necessary.

4.1 Memory latency

Parallel computers introduce a new level in the storage hierarchy; in addition to registers, cache

and memory, there is remote memory that is accessed across an interconnection network. In

this paper our objective is to distribute the computation and data so that we not only balance

processors' workloads but also minimize overheads due to message passing (i.e., memory laten-

cies). In order to achieve our objective: (1) we minimize the access of non-local unknowns by

minimizing the number of grid points that reside on the interfaces of the subdomains (see Figure

3) and (2) we mask memory latencies due to access of non-local data by overlapping calculations

with communication.

For multithreaded parallel PDE computations we identify two types of communications: first,

the communication between interior and interface threads that reside in the same context (local

threads), and second, the communication between interface threads that belong to different

contexts (remote threads). The efficient communication of interior and interface threads is critical

for the overall performance and success of the multithreaded approach. Next we briefly describe

the different communication mechanisms between local and remote threads. For more details on

the implementation of these mechanisms, see [35], [36], [37], [201, [38], and [39].

The communication between local threads can be implemented using one of the following

three approaches: (1) message-passing, (2) shared variables, or (3) 1V-buffer scheme [35]. An

advantageof the first approachis that it treats the communicationof both interior and interface

threads in a uniform way, thereby simplifying programming. A disadvantageis that its imple-

mentation (with someexceptions,e.g.,Mach) requirescopiesof thread-specificdata-structures

from one thread to another; recall that (a) the data-structuresreside in the sameuser-address

spaceand (b) memorycopy operationsintroduce an additional overheadthat doesnot appear

in the non-threadedapproach. The second approach eliminates additional copy operations by

using shared global data-structures. A disadvantage of this approach is that it requires the use

of synchronization mechanisms (mutexes) to protect unwanted reads/writes from/to shared vari-

ables. The implementation of this approach increases program complexity and requires drastic

code restructuring of existing non-threaded programs.

Finally, the third approach we present in [35] is a communication scheme specific to PDE

computations 4 and is based on W (>_ 2) copies of the shared-variables. The idea of this scheme

is to use "rondeau" memory locations in such a way that a thread (destination in the case of

message passing) always reads the correct values that its partner (source) just wrote. Read and

write operations between threads that share these copies of variables are interleaved (odd/even

--rnod W-- iterations in the case 14' = 2) in a way that the overwriting (by one thread) of useful

values (to another thread) is prevented. Therefore, this scheme preserves the integrity of shared

variables without substantially increasing program complexity (in the case of non-copy shared-

variables) and without introducing overheads of unnecessary and expensive copy operations (in

the case of message passing) on local data structures. This approach can be implemented on top

of the existing non-threaded data-parallel codes with minimum modifications. A disadvantage

of this communication scheme is that the storage complexity is increased by O (W • _/q_).

The communication between remote threads (i.e., threads that reside in the memory of different

system processors) can be implemented on top of existing message-passing such as MPI [19], p4

[29], or PVM [30]. Unfortunately, most of the currently available message-passing software do

not provide support for sending/receiving messages to (from) a specific entity (function) of a

process. To provide thread-to-thread communication mechanism we use an idea similar to the

Active Messages (AM) which is described next. For more details on the implementation of the

thread-to-thread communication mechanism, see [36], [37], [20] and [39].

An interface thread that executes for the first time sends its messages to other threads, then

4However it. can be generalized for many other similar computations.

posts all its receives 5 and voluntarily yields the CPU to the dispatcher. The dispatcher does

the proper bookkeeping and schedules the next interface thread--if any. After all the interface

threads from the ready queue are exhausted the dispatcher schedules the first interior thread.

Interior threads require only local data and therefore execute until completion. This process is

repeated until all interior threads are also exhausted from the ready queue.

During the time interior threads perform their own computations, non-local data is arriving

from the network (see Figure 4). The non-local data is stored in user-address space and in

memory locations that the user provides to the OS. In [36] we describe a mechanism where a

specific function (message-handler) is activated (on message arrival the process is interrupted by

a hardware signal) and performs the following operations:

• Parses the header of the message and identifies the destination thread.

• Decrements a thread counter that indicates the number of outstanding receives that corre-

spond to this thread; if the counter of outstanding receives becomes zero then the state of

the thread changes from blocked to ready, and the thread moves from the blocked stack to

the ready stack (see Figure 4). At this point, interface threads have all the data (local and

non-local) they need to perform their computations. Notice that while interface threads are

waiting for incoming messages (through the network), the CPU is utilized by the interior

threads, and thus calculations and communication are overlapped.

4.2 Synchronization cost

Load-balancing operation is a special case of the producer-consumer operation. Consumer-

producer operations like forks and joins and mutual exclusion in parallel programming require

synchronization. In parallel adaptive PDE computations the synchronization cost appears in

the form of waiting time due to unbalanced processor workloads. Our objective is to minimize

this time and mask if possible inherent delays involved in the traditional load-balancing methods

without increasing program complexity. Our approach, in contrast to the direct and incremental

non-threaded load-balancing methods, attempts to ensure that no processor is idle while more

51f a non-blocking receive operation is available, it first posts its receives and then sends its messages to other

threads, which increases the probability of saving a local copy of the message from the system buffer to user

address space.

10

Stack of Threadll

Interior

Threads

Tester

Adcninistrator

Blocked

rnsg at _ o_

User _-
m

Space

Memory

liter/ace
threads

Figure 4: Overlapping of computation with communication; while interface threads are blocked

in the blocked stack waiting for the arrival of non-local data, interior threads--from the ready

stack--utilize the CPU, performing computations oil local data.

than one thread remains to be executed on other processors. Each processor, when the need

arises, requests work (threads) from a subset (neighborhood) of processors that are overloaded

or slow.

Let us assume that our processors are homogeneous and our PDE solver does not share the re-

sources of the system with any other application. We define as computational 9raph Gc(Ec, IJ_),

whose vertices, vi, correspond to the submeshes Di, and the edges ei,j connect two vertices (vi, vj)

if Di A Dj _ O. The weights, wi, on the vertices vi of the graph correspond to the compu-

tation associated with the submesh Di and are analogous to the number of mesh points, IDit.

Figure 5-right depicts the computational graph of the refined mesh (Figure 5-1eft); the weights

wi indicate the number of threads per subdomains (i.e., context or processor).

During the computation of adaptive PDE methods, the mesh is refined in areas where the res-

olution of the solution is larger than a given tolerance (see Figure 5). After the mesh refinement

is completed, new threads are created (or old ones are destroyed) at runtime. All threads are

approximately of the same size (h-refinement). Processor computation is balanced by migrating

interface threads. The thread migration is non-preemptive (i.e., threads migrate before thev

start execution) and, therefore, instead of thread migration, (save-and-migrate threads context,

11

(5)

Figure 5: Left) h-refinement and a 16-way partition of the block Bi of domain defined in Figure

2. Right) Computational graph with uneven number of threads per subdomain (i.e., context or

processor).

registers-values, etc.) we perform data-migration of mesh-points only. The data is migrated so

that subsequent communication for the actual parallel computation of the PDE solver is mini-

mized. In contrast to traditional incremental methods, load sharing of processors is completed

within the first iteration (i.e., before any global reduction operation is required for error checking

or update of global variables).

The policy for thread migration is based on a consumer-initiated consumer/producer (C/P)

paradigm. That is, every processor Pi = m(Di) (consumer), after it completes its computation

(when counter of ready and blocked stacks is zero), searches its neighborhood

N(Pi, l) = {Pj,Pj = m(Dj) and Dj E N(Di,l) ,l = 1,..., diameter(Gc) }

to identify neighboring processors that are overloadedfi Since our model attempts to assure that

no processor remains idle, the consumer sends interrupt-driven messages to its neighbors (see

[36] for implementation details) and requests the migration of one or more threads.

After an overloaded processor Pj C N(Pi, l) is identified, Pj (producer) interrupts its computa-

6Due to changes in the demand for computation, in the case of adaptive methods, or due to external loads of

the processors in the case of time-sharing heterogeneous workstations.

12

Figure 6: Threads T4 migrates from processor Po to processor P1; T4 has most of its data

dependencies with the threads of processor P1. The thread migration is based on the principle

of minimizing the communication of the actual computation.

tion and sends a thread (data) to Pi. The thread that is migrated from the producer to consumer

is likely to have data dependencies with other threads that already reside on the consumer's side.

The producer's decision to migrate a_ interface thread, t;, is based on priorities, Ht., that are

computed at runtime using the following equation:

where

1-It, = _ (1 - x(t,,tj))
tj ENt_

J 0 if re(t,) = m(tj)

j_1 ifre(t,) ¢

and Nt, is the set of all threads tj with data dependencies on ti. Figure 6 depicts the different

priorities for an interface thread T4 of processor Po.

A consumer (processor) might get data from more than one producer. In this case it creates

and executes remote threads one at a time, using a FIFO policy. Before a remote thread,trmt,

is created by the consumer, the consumer uses a remote service request, Check_Thread_State,

to find out the current state of thread t_mt on the processor (producer) from which thread t_nt

13

has come from. If the current state of trmt thread is ready, then tr,_t is created and scheduled

for execution on the consumer; its state on the producer changes from ready to dead. The

Check_Thread_State is also an interrupt-driven RSR (see [36] for implementation details). Notice

that in contrast to existing load-balancing methods, no global synchronization is required for

load sharing between producer and consumer processors. Also, the consumer performs most of

the computation required for load sharing decision. Since underloaded processor (consumers) are

anyway idle, we can use them for the extra work required for solving the load-balancing problem.

Also, notice that we use interrupt-driven remote service requests so that the consumer can get

data and schedule as soon as possible the remote threads that have migrated to its context.

Existing load-balancing methods are based on global synchronization barriers that have to be

reached by all processors. In the case of non-threaded incremental methods, this implies that

some processors have to wait, since the processors' loads are balanced gradually.

5 Analysis

In this section we compare the multithreaded approach with traditional incremental methods

only, since direct methods are very expensive to be used for the load balancing of parallel adaptive

computations. Consider the computation graph of Figure 5 and let Tst be the total execution

time required by the PDE solver--whose computation is balanced by an incremental algorithm--

that performs N iterations until the next mesh refinement occurs. An incremental method will

balance the computation in K iterations. For each iteration i, with 1 < i < K, let W_ denote

the maximum workload over all processors. Let Tsa be the summation of time needed for the

decision making, communication, and packing data to be migrated from an overloaded processor

to an underloaded one. Once the processors decide on the data to be migrated, they send/receive

the additional data, we denote this time as T, mg_.

Taking into account that the slowest (most overloaded) processor dominates the execution

time at each iteration, we can compute the total execution time between two mesh refinements

by:

Let Wiaz

K

= Z w' o=+ (N - K)WL= + K. (+) (2)
i=1

= W_ + Ai where Ai depends on the application and effectiveness of the incremental

14

algorithm and let C1 -- E//'l- 1 Ai, where Ai, and subsequently C1, are relatively large constants. 7

Then (2) can be written as :

Tst -" 1(. _Zrn_:x-4- C1 "+"N . W,_'_: - K . W,__x + K . (Tstb + T,_igr) ==_

T_, = N. wg_x + K . (T_b + T,_,gr) + 61 (3)

Now, consider again the same computation (Figure 5) as above and let T_t be the total execu-

tion time required by the PDE solver--whose computation is load balanced by a multithreaded

load-sharing algorithm--that performs N iterations until the next mesh refinement occurs. Then

Trot is equal to :
N

Trot = __,(Wt_,_r + N, . Taxt)+ L. (Troth + Tp,,) =_
i=1

Trot = N . W:,r + N. Nt . Ta::t + L . (T_lb + Tp,,t) (4)

where W_w is the average load using threads, L is the number of times the slowest processor has

to migrate data, and Nt is the maximum number of threads. Since we adjust (reduce) the size

of the threads in order to get better load resolution (unit-wise, where a unit can be an element

for FEM or a grid point for FD), we can say that after a small number of iterations, M, that

depends on the size of the thread, we can have W_,_ _ W_,_, which is very close to perfect load

balance, unit-wise. For example, for threads with 100's of units (elements of grid points), by

reducing the thread size,]tl, each time by half, we can achieve perfect balance in fewer than ten

iterations. Also, let (_i W_ W_ for i < M then Co M= -- = _;=1 (_i is a small constant. Then (4)

can be written as :

T,,,, = N . W_r + N. Nt " Ta,t + L . (T,,,tb + Tp,,t) + Co (5)

From equations (3) and (5) and the fact that Wa_'_:: = W,,_ + a. t,,,_it (usually a >> 1 [1]),

we see that a multithreaded load-sharing algorithm can be more efficient than any non-threaded

incremental algorithm if:

N. - + K. + + C: - L. (T tb +
Nt <_ N . Ta::t (6)

For light-weight threads, Ta::t as well as Tmtb and Tp,_t is of an order of tens of micro-seconds

[32]. Therefore N. Tct:_t and L. (T_lb + Tp_,t) are very small numbers compared to K. (T, tb + T,,,_a_),

7For the examples that appear in [50], Ai varies from 10 to 50 units, and K varies from a few tens of iterations

to a few 100's of iterations.

15

N-a- t_it, and C2 = (C1 - Co) s [1] that are in the order of seconds. Therefore, theoretically,

a light-weight multithread system with a reasonably large number of threads, Nt, is capable of

improving the performance of parallel adaptive PDE methods even further. A careful and very

efficient implementation of such a model will be able to realize the above expectations. This

is easier when high-order schemes are used or problems with many degrees of freedom per grid

point since W_: x - W_w >> 1.

6 Discussion- Conclusions

Existing load-balancing algorithms require that all processors enter the balancing phase at the

same time--guaranteed by global synchronization barriers. This requirement leads to: (1) the

under-utilization of resources such as the CPU and network because many processors may wait

until the overloaded or slow processors reach the global barrier, and (2) the intensification of

problems like network contention due to exclusive use either of the network (data-migration)

or of the CPU (decision-making). Concurrent execution of tasks required for load-balancing

with tasks required for the actual computation is the key ingredient for developing efficient load-

balancing algorithms. Here threads are used as a mechanism to explore concurrency at the

processor level in order to tolerate memory latency and mask synchronization costs inherent in

traditional load-balancing methods. It is important that threads tolerate memory and scheduling

latencies without sacrificing program simplicity and portability.

Our preliminary experimental data using CHANT [37] and NEXUS [20] indicate that for up to

64 threads, the overhead introduced due to context switch is very small compared to the execution

time required for the computations required for the numerical solution of the PDE. Moreover,

for applications with a large number of coarse-grain threads (up to a point) can minimize cache

misses and improve performance (of course the same performance can be achieved by the re-

structuring of non-threaded programs wan error prone process). Also, our preliminary data

indicates that with up to 32 threads on SP2 one can overlap computation with communication

and improve processor and network utilization.

Finally, further research is required in a number of directions: (1) evaluation of multithreaded

approach with respect to numerical stability of PDE solvers, (2) evaluation and calibration of

sCo < C1, since M usually is of the order of 10 (log2100), while K can be from a few tens to a few hundreds

of iterations [1] and $i decreases each time by half, while Ai can be between a few units to tens of units.

16

the model using real applications - we investigate the use of this approach for dealing with

load balancing problems in numerical relativity codes[55], (3) generalizationof the model to

handle hp-refinement methods, (4) developmentof transformation mechanismsfor converting

off-the-shelf vast number FORTRAN libraries for PDEs from non-threaded to multithreaded

programming paradigm,(5) creationof multithreaded runtime support systemsfor parallel com-

pilers -we investigatethis within the Bernoulli compiler [56],and problemssolvingenvironments

-we investigate this within the Parallel ELLPACK environment [57].

Acknowledgements

I would like to thank Mike del Rosario, Matthew Haines, Thomas Fahringer, Piyush Mehro-

tra, Geoffrey Fox, John Rice, David Keyes and Janusz Niemic for interesting and very helpful

discussions on threads and dynamic load-balancing of adaptive computations.

References

[1] S.R. Wheat, K.D. Devine, and A.B. Maccabe, Experience with automatic, dynamic load

balancing and Adaptive Finite Element Computation, Proceedings of the 27th Hawaii Inter-

national Conference on Systems Sciences, January 1994.

[2] Ravi Ponnusamy, Yuan-Shin Hwang, Joel Saltz, Alok Choudhary, Geoffrey Fox, Supporting

Irregular Distributions in FORTRAN 90D/HPF Compilers, University of Maryland, Depart-

ment of Computer Science and UMIACS Technical Reports CS-TR-3268, UMIACS-TR-94-57,

1994.

[3] R. Das, Y. Hwang, M. Uysal, J. Saltz, A. Sussman, Applying the CHAOS/PARTI Library to

Irregular Problems in Computational Chemistry and Computational Aerodynamics Proceed-

ings of the Scalable Parallel Libraries Conference, Mississippi State University, Starkville,

MS, 45-46, October 6-8, 1993.

[4] High Performance Fortran Forum,

Scientific Programming, Vol.2 No.l,

ftp.npac.syr.edu.

High Performazace Fortran Language Specification,

July 1993. Also available by anonymous ftp from

17

[5] G. Fox, S.Hiranadani, K. Kennedy,C. Koelbel, U. Kremer, C. Tseng,and M. Wu. FortranD

Language Specification. Technical Report SCCS-42c, Rice COMP TR90-141, 37p, 1991.

[6] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, Fortran 90D/HPF Compiler for

Distributed Memory MIMD Computers: Design, Implementation, and Performance Results,

Proceedings of Supercomputing '93, Portland, OR, November 1993.

[7] B. Chapman, P. Mehrotra, H. Zima, Vienna Fortran -- A Fortran language extension for

distributed memory multiprocessors, NASA Contractor Report 187634, ICASE Report No.

91-72, 1991.

[8] J. Boykin, D. Kirschen, A. Langerman, and S. LoVoerso, Programming under Mach, Unix

and Open Systems Series, Addison-Wesley, 500, 1993.

[9] H. Lockhart, Jr., OSF DCE, Guide to Developing Distributed Applications, J. Ranade

Workstation Series, McGraw-Hill, Inc, 1994.

[10] B. Marsh, M. Scott, T. LeBlanc, and E. Markatos, First-class user-level threads. Proceedings

of the Thirteenth SOSP, Pacific Grove, CA, October 1991.

[11] F. Mueller, Implementing POSIX threads under UNIX: Description of work in progress,

Proceedings of the 2nd Software Engineering Research Forum, Melbourne, Florida, Nov. 1992.

[12] F. Mueller, A library implementation of POSIX threads under UNIX, 1993 winter USENIX,

San Diego, CA, January 25-29, 1993.

[13] D. Horst Simon. Partitioning of unstructured problems for parallel processing. Technical

Report RNR-91-008, NASA Ames Research Center, Moffet Field, CA, 94035, 1990.

[14] E. Felten and D. McNamee, Improving the Performance of Message-Passing Applications by

Multithreading, Proceedings of the Scalable High Performance Computing Conference 84-89,

1992.

[15] N.P. Chrisochoides, Multithread PDE solving systems for distributed address space par-

allel machines, Proceedings of the IMACS World Congress on Computational and Applied

Mathematics, 93-96, Atlanta, GA, July 11-15, 1994.

18

[16] D. Keppel, Tools and techniquesfor building fast portable threads packages, Univer-

sity of Washington, Department of Computer Scienceand Engineering, Technical Report

UWCSE93-05-06,1993.

[17] N.P. Chrisochoidesand Mike del Rosario,Evaluation of Remote ServiceProtocols for Dis-

tributed Multithreaded Runtime Support Systems,Poster paper presented in Frontiers '95.

[18] N.P. Chrisochoides, M. Haines and P. Mehrotra, An Evaluation of Distributed Multithreaded

Primitives for PDE Computations, In preparation, ICASE Report.

[19] MPI Forum, Message-Passing Interface Standard, April 15, 1994.

[20] I. Foster, Carl Kesselman, R. Olson, and Steve Tuecke, Nexus: An Interoperability Layer

for Parallel and Distributed Computer Systems, Argonne National Laboratory, ANL/MCS-

TM-189, May 1994.

[21] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr, Imple-

menting a Parallel C++ Runtime System for Scalable Parallel Systems, Proceedings of the

Supercomputing '93 Conference, Portland, Oregon, Nov. 15-19, 1993.

[22] G. Fox, R. Williams and P. Messina, Parallel Computing Works/ Morgan Kaufmann

Publishers, Inc., San Francisco, California, 1994.

[23] N.P. Chrisochoides, Elias Houstis and John Rice, Mapping Algorithms and Software Envi-

ronment for Data Parallel PDE Iterative Solvers, Special issue of the Journal of Parallel and

Distributed Computing on Data-Parallel Algorithms and Programming, Vol 21, No 1, 75-95,

April 1994.

[24] B. Hendrickson and R. Leland, The Chaco User's Guide, Sandia National Laboratory

Technical Publication, SAND93-2339.

[25] B. Hendrickson and R. Leland, A Multilevel Algorithm for Partitioning Graphs, Sandia

National Laboratory Technical Publication, SAND93-1301.

[26] Piyush Mehrotra and Matthew Haines, An overview of the OPUS language and runtime

system, NASA CR-194921, ICASE Report No. 94-39, Institute for Computer Applications

in Science and Engineering, Mail Stop 132C, NASA Langley Research Center, Hampton, VA

23681-0001, May 1994.

19

[27] N. Sundaresanand L. Lee, An object-oriented thread model for parallel numerical applica-

tions. Proceedings of the 2nd Annual Object-Oriented Numerics Conference - OONSKI 94,

Sunriver, Oregon, 291-308, April 24-27, 1994.

[28] D. Gannon, S. Yang and P. Beckman, User Guide for a portable Parallel C++ Programming

System pC++. Department of Computer Science and CICA, Indiana University, January

1994.

[29] Ralph M. Butler and Ewing L. Lusk, User's Guide to p_ Parallel Programming System,

Mathematics and Computer Science Division, Argonne National Laboratory, October 1992.

[30] A. Belguelin, J. Dongarra, A. Geist, R. Manchek, S. Otto and J. Walpore, PVM: Ex-

periences, current status and future direction, Supercomputing '93 Proceedings, 765-766,

1993.

[31] R. Konuru, J. Casa, R. Prouty, S. Otto and J. Walpole, A user-level process package for

PVM, Proceedings of the Scalable High Performance Computing Conference, Knoxville, Ten-

nessee, 48-55, May 23-25, 1994.

[32] Thorsten yon Eicken, Davin E. Culler, Seth Cooper Goldstein and Klaus Erik Schauser,

Active Messages: a mechanism for integrated communication and computation, Proceedings

of the 19th International Symposium on Computer Architecture, ACM Press, May 1992.

[33] E. Brewer and B. Kuszmaul, How to get good performance from CM-5 data network,

Proceedings of the International Parallel Processing Symposium, 1994.

[34] Thorsten von Eicken, Personal Communication.

[35] N.P. Chrisochoides, An Efficient thread-to-thread communication for hybrid

shared/distributed address space programming paradigms, to be submitted to IEEE Trans.

Parallel and Distributed Computing.

[36] Juan Miguel del Rosario and N.P. Chrisochoides, An interrupt driven implementation of

thread-to-thread communication for distributed address space machines, To be submitted to

IEEE Trans. Parallel and Distributed Computing.

2O

[37] Matthew Haines, David Cronk, and Piyush Mehrotra, On the designof Chant : A talk-

ing threads package,NASA CR-194903,ICASE Report No. 94-25,Institute for Computer

Applications in Scienceand Engineering,Mail Stop 132C,NASA Langley Research Center,

Hampton, VA 23681-0001, April 1994.

[38] M. Feeley, J. Chase and E. Lazowska, User-level threads and interprocess communication,

University of Washington, Department of Computer Science and Engineering, Technical Re-

port 93-02-03, 1993.

[39] I. Kala, E. Arjomandi, G. Gao and B. Farrell, FTL: A multithreaded environment for

parallel computation, Proceedings CASCON'9_, 292-303, 1994.

[40] C. Farhat, A simple and efficient automatic fem domain decomposer. Computers and

Structures, 28:579-602, 1988.

[41] Nashat Mansour and Geoffrey Fox. Allocating Data to Multicomputer Nodes by Physical

Optimization Algorithms for Loosely Synchronous Computations. Concurrency: Practice

and Experience, Vol. 4, Number 7, 557-574, October 1992.

[42] M. Berger and S. Bokhari, A partitioning strategy for nonuniform problems on multipro-

cessors. IEEE Trans. Computers, C-36, 5, 570-580, May 1987.

[43] R.D. Williams, Performance of dynamic load balancing algorithms for unstructured mesh

calculations, Concurrency'Practice and Experience, 3(5), 457-481, 1991.

[44] C. Walshaw and M. Berzins, Dynamic load balancing for PDE solvers an adaptive unstruc-

tured meshes, University of Leeds, School of Computer Studies, Report 92.32, 1992.

[45] M. Jones and P. Plassman, Parallel algorithms for adaptive refinement and partitioning of

unstructured meshes. Proceedings of the Scalable High Performance Computing Conference,

Knoxville, Tennessee, 478-485, May 23-25, 1994.

[46] A. Vidwans and Y. Kallinderis, A parallel dynamic load balancing algorithm for 3-D adaptive

unstructured grids, In 11th AIAA Computational Fluid Dynamics Conference, AIAA-93-

3313-CP, Orlando, FL, July 1993.

21

[47] N.P. Chrisochoidesand J.R. Rice, Partitioning heuristics for PDE computations basedon

parallel hardwareand geometrycharacteristics.In Advances in Computer Methods for Partial

Differential Equations VII, (R. Vichnevetsky. D. Knight and G. Richter, eds) IMACS, New

Brunswick, N J, 127-133, 1992.

[48] N.P. Chrisochoides, Nashat Mansour and Geoffrey Fox, A Comparison of data mapping

algorithms for parallel iterative PDE solvers Journal of Concurrency Practice and Ezperience,

1995.

[49] H.L. deCougny, K.D. Devine, J.E. Flaherty, R.M. Loy, C. Ozturan, and M.S. Shephard,

Load Balancing of Parallel Adaptive Solution of Partial Differential Equations, Rensselaer

Polytechnic Institute, Department of Computer Science, Technical Report, TR94-8, 1994.

[50] C. Ozturan, H.L. deCougny, M.S. Shephard and J.E. Flaherty, Parallel Adaptive Mesh

Refinement and Redistribution on Distributed Memory Computers, Rensselaer Polytechnic

Institute, Department of Computer Science, Technical Report, TR93-26, 1993.

[51] N.P. Chrisochoides, G.C. Fox and J.F. Thompson, MENUS-PGG: Mapping Environment for

Numerical Unstructured & Structured - Parallel Grid Generation, Proceedings of the Seventh

International Conference on Domain Decomposition Methods in Scientific and Engineering

Computing, 1995.

[52] J. Holm, A. Lain, and P. Banerjee, Compilation of scientific programs into multithreaded

and message driven computation, Proceedings of the Scalable High Performance Computing

Conference, Knoxville, Tennessee, 518-525, May 23-25, 1994.

[53] I. Foster, Carl Kesselman and Steve Tuecke, Portable Mechanisms for Multithreaded Dis-

tributed Computations, Argonne National Laboratory, MCS-P494-0195, 1994.

[54] J.B. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential

equations, Journal of Computational Physics, 53: 484-512, 1984.

[55] Grand Challenge Alliance: Binary Black Holes, Available on the World Wide Web at site:

http://www.npac, syr.edu/proj ect s/bbh/more.ht ml.

[56] Vladimir Kotlyar, Keshav Pingali and Paul Stodghill, Automatic Parallelization of Sparse

Conjugate Gradient Code, Department of Computer Science, Cornell University, 1995.

22

[57] E.N. Houstis, J.R. Rice, N.P. Chrisochoides,H.C. Karathanases,P.N. Papachiou, M.K.

Samartzis,E.A. Vavalis,Ko YangWangand S.Weerawarana,Parallel ELLPACK: A numer-

ical Simulation ProgrammingEnvironment for Parallel MIMD Machines,Proceedings of the

4 *h International Conference on Supercomputing, ACM publications, 96-107, 1990.

23

I F_,, _rov,_REPORT DOCUMENTATION PAGE OM8No.O_-OUm
I

F'uelc_q ._,_.._, _is c_bc_,,ofi,_.r_.,.i, _ m.,_mp Zh_.rp_r..m,po_. iac!gd_i_, Uu _ m_. "n._,m,... ,W_,,,_,_,_ d,_ ,uL_...
iq_hcrin| uml mamto.mqt_ dataneeded:and compi_.nla .hafur.ran|me .c_.lectmnm,m. _ cc._.menu rqpu_.mgmw.lmrc_me_.maww _ny c,_rupe_, c. m,I
collectionof infwm. _lon.induing SUlEiPumwsfor rocluaqthu Ix__ n.to WaphnnlrtonI-leuquarWl* _Pp.enltKm.. m_. eceporw,._.z_Jnenon
Dm_ Hillmqq, Suite 1204. Arhngton.VA 22202-4302. andto the _ of Meltal_meM iltd Budpl. I_lpMl_qll¢I_lldUctlolr_Projectl,u(o4-gluo), wmmmlton. L_ _U_.

|. AGENCY USE ONLY(L--re blank) 2. REPORT DATE

November 1995

4. TITLE AND SUBTITLE

MULTITHREADED MODEL FOR DYNAMIC
LOAD BALANCING PARALLEL ADAPTIVE
PDE COMPUTATIONS

6. AUTHOR(S)

Niko_ C]u'bocho_des

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Ensineering

Mm_ Stop 132C, NASA Lansley Research Center

Hampton, VA 23681-0001

S. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeron*utics and Space Aam_n_tration

Langley Research Center

Hampton, VA 23681-0001

3. REPORT TYPE AND DATES COVERED

Co-tractor Report
S. FUNDING NUMBERS

C NASI-19480
WU 505.90-$2-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 95-83

lO. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198244
ICASE Report No. 95-83

1|. SUPPLEMENTARY NOTES

Lmz_ley Technical Monitor: Dennis M. Bushnell
Final Report
To appear in Applied Numezical Mathematics _ournal

121. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlhmt ed

12b. DISTRIBUTION CODE

Subject Category 60, 61

]3. ABSTRACT (Max_nurn 200 womb)

We present a multithreaded model for the dynamic load-balan_ of numerical, adaptive computations required

for the solution of Partial I)i_erential Equations (PDF_) on multiproce_om. Multithreadin_ is used u a means

of explo_i_ concurrency in the processor level in order to tolerate synchronization costs inherent to trad/tional

(non-threaded) parallel adaptive PDE solvers. Our preliminary analysk for parallel, adaptive PDE solvers iadic_tes
that multit_ can be used as a mechanism to mask overheads _[uh_ for the dynamic balanci_ of processor

workloads with computations required for the actual num_cal solution of the PDEs. Also, multithrending can

s/mplif_ the implementation of dynamic load-bslanci_ algorithms, a task that is very dJ_cult for traditional data

parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify pro_am complexity,

often makes code re-usability not an easy tuk, and increases software complexity.

]4. SUBJECT TERMS

dynamic load balancing; runtime support system; thread baaed system

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE

Unclassified Unclassified

iSN 7S40-01-280-SS00

19. SECURITY CLASSIFICATION

OF ABSTRACT

IS. NUMBER OF PAGES

25

16. PRICE CODE

20. LIMITATION

OF ABSTRACT

|tlndurd Form 2M(Rev. 2-89)
Pnlscribed by ANSI S',d, 7.,39-18

296-102

